\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - 3D Spherical Geometry Kernel
AlgebraicKernelForSpheres::Solve Concept Reference

Definition

Operations

A model of this concept must provide:

template<class OutputIterator >
OutputIterator operator() (const Type1 &p1, const Type2 &p2, const Type3 &p3, OutputIterator res)
 Copies in the output iterator the common roots of p1, p2, and p3, with their multiplicity, as objects of type std::pair< AlgebraicKernelForSpheres::Root_for_spheres_2_3, int>. More...
 

Member Function Documentation

◆ operator()()

template<class OutputIterator >
OutputIterator AlgebraicKernelForSpheres::Solve::operator() ( const Type1 &  p1,
const Type2 &  p2,
const Type3 &  p3,
OutputIterator  res 
)

Copies in the output iterator the common roots of p1, p2, and p3, with their multiplicity, as objects of type std::pair< AlgebraicKernelForSpheres::Root_for_spheres_2_3, int>.

Here, Type1, Type2, and Type3 can all be either AlgebraicKernelForSpheres::Polynomial_1_3 or AlgebraicKernelForSpheres::Polynomial_for_spheres_2_3.

Precondition
The set of solutions of the system is 0-dimensional.