\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - 3D Spherical Geometry Kernel
CGAL::Line_arc_3< SphericalKernel > Class Template Reference

#include <CGAL/Line_arc_3.h>

Definition

Creation

 Line_arc_3 (const Line_3< SphericalKernel > &l, const Circular_arc_point_3< SphericalKernel > &p1, const Circular_arc_point_3< SphericalKernel > &p2)
 Construct the line segment supported by l, whose source is p1, and whose target is p2. More...
 
 Line_arc_3 (const Line_3< SphericalKernel > &l, const Point_3< SphericalKernel > &p1, const Point_3< SphericalKernel > &p2)
 Same.
 
 Line_arc_3 (const Segment_3< SphericalKernel > &s)
 

Access Functions

Line_3< SphericalKernelsupporting_line ()
 
Circular_arc_point_3< SphericalKernelsource ()
 
Circular_arc_point_3< SphericalKerneltarget ()
 
Circular_arc_point_3< SphericalKernelmin ()
 Constructs the minimum vertex according to the lexicographic ordering of coordinates.
 
Circular_arc_point_3< SphericalKernelmax ()
 Same for the maximum vertex.
 

Query Functions

bool is_vertical ()
 Returns true iff the segment is vertical.
 
bool operator== (const Line_arc_3< SphericalKernel > &s1, const Line_arc_3< SphericalKernel > &s2)
 Test for equality. More...
 
bool operator!= (const Line_arc_3< SphericalKernel > &s1, const Line_arc_3< SphericalKernel > &s2)
 Test for nonequality.
 
istream & operator>> (std::istream &is, Line_arc_3 &ca)
 The format for input/output is, for each line arc: a Line_3 (the supporting line) and two Circular_arc_point_3 (the two endpoints), under the condition that the endpoints are actually lying on the line.
 
ostream & operator<< (std::ostream &os, const Line_arc_3 &ca)
 The format for input/output is, for each line arc: a Line_3 (the supporting line) and two Circular_arc_point_3 (the two endpoints), under the condition that the endpoints are actually lying on the line.
 

Constructor & Destructor Documentation

◆ Line_arc_3()

template<typename SphericalKernel >
CGAL::Line_arc_3< SphericalKernel >::Line_arc_3 ( const Line_3< SphericalKernel > &  l,
const Circular_arc_point_3< SphericalKernel > &  p1,
const Circular_arc_point_3< SphericalKernel > &  p2 
)

Construct the line segment supported by l, whose source is p1, and whose target is p2.

Precondition
p1 and p2 lie on l. p1 and p2 are different.

Member Function Documentation

◆ operator==()

template<typename SphericalKernel >
bool CGAL::Line_arc_3< SphericalKernel >::operator== ( const Line_arc_3< SphericalKernel > &  s1,
const Line_arc_3< SphericalKernel > &  s2 
)

Test for equality.

Two segments are equal, iff their non-oriented supporting lines are equal (i.e. they define the same set of points), and their endpoints are the same.