\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - Geometric Object Generators
CGAL::Random_points_in_sphere_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

Definition

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_3 value_type
 
typedef std::ptrdiff_t difference_type
 
const typedef Point_3pointer
 
const typedef Point_3reference
 
 Random_points_in_sphere_3 (double r, Random &rnd=get_default_random())
 creates an input iterator g generating points of type Point_3 uniformly distributed strictly inside the sphere with radius \( r\), i.e. \( |*g| < r\) . More...
 

Constructor & Destructor Documentation

◆ Random_points_in_sphere_3()

template<typename Point_3 , typename Creator >
CGAL::Random_points_in_sphere_3< Point_3, Creator >::Random_points_in_sphere_3 ( double  r,
Random rnd = get_default_random() 
)

creates an input iterator g generating points of type Point_3 uniformly distributed strictly inside the sphere with radius \( r\), i.e. \( |*g| < r\) .

Three random numbers are needed from rnd for each point.