\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - 2D and 3D Linear Geometry Kernel
Kernel::ComputeApproximateDihedralAngle_3 Concept Reference

Definition

Operations

A model of this concept must provide:

Kernel::FT operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &s) const
 returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq. More...
 

Member Function Documentation

◆ operator()()

Kernel::FT Kernel::ComputeApproximateDihedralAngle_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
const Kernel::Point_3 r,
const Kernel::Point_3 s 
) const

returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq.

The sign is negative if orientation(p,q,r,s) is CGAL::NEGATIVE and positive otherwise. The angle is given in degrees.

Precondition
p,q,r and p,q,s are not collinear.