\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - 2D Periodic Hyperbolic Triangulations
Periodic_4HyperbolicDelaunayTriangulationTraits_2 Concept Reference

Definition

Computation Types

typedef unspecified_type Compute_approximate_hyperbolic_diameter
 Must provide the function operator. More...
 

Operations

Compute_approximate_hyperbolic_diameter compute_approximate_hyperbolic_diameter_object () const
 

Member Typedef Documentation

◆ Compute_approximate_hyperbolic_diameter

Must provide the function operator.

double operator()(Hyperbolic_point_2 p1, Hyperbolic_point_2 p2, Hyperbolic_point_2 p3),

which returns a floating-point approximation of the hyperbolic diameter of the circle defined by the points p1, p2, and p3.