CGAL 4.14.3 - Algebraic Foundations
AlgebraicStructureTraits_::Divides Concept Reference

## Definition

AdaptableBinaryFunction, returns true if the first argument divides the second argument.

Integral division (a.k.a. exact division or division without remainder) maps ring elements $$(n,d)$$ to ring element $$c$$ such that $$n = dc$$ if such a $$c$$ exists. In this case it is said that $$d$$ divides $$n$$.

This functor is required to provide two operators. The first operator takes two arguments and returns true if the first argument divides the second argument. The second operator returns $$c$$ via the additional third argument.

Refines:
AdaptableBinaryFunction
AlgebraicStructureTraits
AlgebraicStructureTraits_::IntegralDivision

## Types

typedef unspecified_type result_type
Is AlgebraicStructureTraits::Boolean.

typedef unspecified_type first_argument
Is AlgebraicStructureTraits::Type.

typedef unspecified_type second_argument
Is AlgebraicStructureTraits::Type.

## Operations

result_type operator() (first_argument_type d, second_argument_type n)
Computes whether $$d$$ divides $$n$$.

result_type operator() (first_argument_type d, second_argument_type n, AlgebraicStructureTraits::Type &c)
Computes whether $$d$$ divides $$n$$. More...

## ◆ operator()()

 result_type AlgebraicStructureTraits_::Divides::operator() ( first_argument_type d, second_argument_type n, AlgebraicStructureTraits::Type & c )

Computes whether $$d$$ divides $$n$$.

Moreover it computes $$c$$ if $$d$$ divides $$n$$, otherwise the value of $$c$$ is undefined.