\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.3 - 2D and 3D Linear Geometry Kernel
CGAL::collinear_are_ordered_along_line()

See also
CGAL::are_ordered_along_line()
CGAL::are_strictly_ordered_along_line()
CGAL::collinear_are_strictly_ordered_along_line()

Functions

template<typename Kernel >
bool CGAL::collinear_are_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r)
 returns true, iff q lies between p and r. More...
 
template<typename Kernel >
bool CGAL::collinear_are_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r)
 returns true, iff q lies between p and r. More...
 

Function Documentation

◆ collinear_are_ordered_along_line() [1/2]

template<typename Kernel >
bool CGAL::collinear_are_ordered_along_line ( const CGAL::Point_2< Kernel > &  p,
const CGAL::Point_2< Kernel > &  q,
const CGAL::Point_2< Kernel > &  r 
)

#include <CGAL/Kernel/global_functions.h>

returns true, iff q lies between p and r.

Precondition
p, q and r are collinear.

◆ collinear_are_ordered_along_line() [2/2]

template<typename Kernel >
bool CGAL::collinear_are_ordered_along_line ( const CGAL::Point_3< Kernel > &  p,
const CGAL::Point_3< Kernel > &  q,
const CGAL::Point_3< Kernel > &  r 
)

#include <CGAL/Kernel/global_functions.h>

returns true, iff q lies between p and r.

Precondition
p, q and r are collinear.