Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 4.14.3 - Polynomial
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
Polynomial_d Concept Reference

Definition

A model of Polynomial_d is representing a multivariate polynomial in d \geq 1 variables over some basic ring R. This type is denoted as the innermost coefficient. A model of Polynomial_d must be accompanied by a traits class CGAL::Polynomial_traits_d<Polynomial_d>, which is a model of PolynomialTraits_d. Please have a look at the concept PolynomialTraits_d, since nearly all functionality related to polynomials is provided by the traits.

Refines:
IntegralDomainWithoutDivision

The algebraic structure of Polynomial_d depends on the algebraic structure of PolynomialTraits_d::Innermost_coefficient_type:

Innermost_coefficient_type Polynomial_d
IntegralDomainWithoutDivision IntegralDomainWithoutDivision
IntegralDomain IntegralDomain
UniqueFactorizationDomain UniqueFactorizationDomain
EuclideanRing UniqueFactorizationDomain
Field UniqueFactorizationDomain
Note
In case the polynomial is univariate and the innermost coefficient is a Field the polynomial is model of EuclideanRing.
See also
AlgebraicStructureTraits
PolynomialTraits_d
Has Models:
CGAL::Polynomial<Coeff>