\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - Algebraic Kernel
AlgebraicKernel_d_1::IsZeroAt_1 Concept Reference

Definition

Types

typedef unspecified_type result_type
 Type convertible to bool
 
typedef AlgebraicKernel_d_1::Polynomial_1 first_argument_type
 
typedef AlgebraicKernel_d_1::Algebraic_real_1 second_argument_type
 

Operations

result_type operator() (const first_argument_type &p, const second_argument_type &x)
 Computes whether \( p\) is zero at \( x\).