Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 4.14 - Algebraic Kernel
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
AlgebraicKernel_d_2::ApproximateAbsoluteX_2 Concept Reference

Definition

Types

typedef std::pair< AlgebraicKernel_d_1::Bound, AlgebraicKernel_d_1::Boundresult_type
 
typedef AlgebraicKernel_d_2::Algebraic_real_2 first_argument_type
 
typedef int second_argument_type
 

Operations

result_type operator() (const first_argument_type &v, const second_argument_type &a)
 The function computes a pair p of AlgebraicKernel_d_1::Bound, where p.first represents the lower approximation and p.second represents the upper approximation. More...
 

Member Function Documentation

◆ operator()()

result_type AlgebraicKernel_d_2::ApproximateAbsoluteX_2::operator() ( const first_argument_type v,
const second_argument_type a 
)

The function computes a pair p of AlgebraicKernel_d_1::Bound, where p.first represents the lower approximation and p.second represents the upper approximation.

The pair p approximates the x-coordinate x of the AlgebraicKernel_d_2::Algebraic_real_2 value v with respect to the absolute precision a.

Postcondition
p.first <= x
x <= p.second
(x - p.first) <= 2^{-a}
(p.second - x) <= 2^{-a}