CGAL 4.14 - 3D Spherical Geometry Kernel
|
#include <CGAL/Circular_arc_point_3.h>
Related Functions | |
(Note that these are not member functions.) | |
bool | operator== (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Test for equality. More... | |
bool | operator!= (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Test for nonequality. | |
bool | operator< (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically smaller than q , i.e. either if p.x() < q.x() or if p.x() == q.x() and p.y() < q.y() or if p.x() == q.x() and p.y() == q.y() and p.z() < q.z() . | |
bool | operator> (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically greater than q . | |
bool | operator<= (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically smaller than or equal to q . | |
bool | operator>= (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically greater than or equal to q . | |
istream & | operator>> (std::istream &is, Circular_arc_point_3 &p) |
ostream & | operator<< (std::ostream &os, const Circular_arc_point_3 &p) |
Creation | |
Circular_arc_point_3 (const Point_3< SphericalKernel > &q) | |
Circular_arc_point_3 (const SphericalKernel::Root_for_spheres_2_3 &r) | |
Access Functions | |
const SphericalKernel::Root_of_2 & | x () |
\( x\)-coordinate of the point. | |
const SphericalKernel::Root_of_2 & | y () |
\( y\)-coordinate of the point. | |
const SphericalKernel::Root_of_2 & | z () |
\( z\)-coordinate of the point. | |
Bbox_3 | bbox () const |
Returns a bounding box around the point. | |
|
related |
Test for equality.
Two points are equal, iff their \( x\), \( y\) and \( z\) coordinates are equal.