\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 3D Spherical Geometry Kernel
SphericalKernel::Split_3 Concept Reference



A model of this concept must provide:

void operator() (const SphericalKernel::Circular_arc_3 &a, const SphericalKernel::Circular_arc_point_3 &p, SphericalKernel::Circular_arc_3 &a1, SphericalKernel::Circular_arc_3 &a2)
 Splits arc a at point p, which creates arcs a1 and a2. More...
void operator() (const SphericalKernel::Line_arc_3 &l, const SphericalKernel::Circular_arc_point_3 &p, SphericalKernel::Line_arc_3 &l1, SphericalKernel::Line_arc_3 &l2)
 Same for a line arc.

Member Function Documentation

◆ operator()()

void SphericalKernel::Split_3::operator() ( const SphericalKernel::Circular_arc_3 a,
const SphericalKernel::Circular_arc_point_3 p,
SphericalKernel::Circular_arc_3 a1,
SphericalKernel::Circular_arc_3 a2 

Splits arc a at point p, which creates arcs a1 and a2.

The point p lies in the interior of the input arc a.