CGAL 4.14 - 2D and 3D Linear Geometry Kernel
|
Functions | |
template<typename Kernel > | |
Comparison_result | CGAL::compare_dihedral_angle (const CGAL::Point_3< Kernel > &a1, const CGAL::Point_3< Kernel > &b1, const CGAL::Point_3< Kernel > &c1, const CGAL::Point_3< Kernel > &d1, const Kernel::FT &cosine) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), of the tetrahedron (a1, b1, c1, d1) at the edge (a1, b1) , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). More... | |
template<typename Kernel > | |
Comparison_result | CGAL::compare_dihedral_angle (const CGAL::Point_3< Kernel > &a1, const CGAL::Point_3< Kernel > &b1, const CGAL::Point_3< Kernel > &c1, const CGAL::Point_3< Kernel > &d1, const CGAL::Point_3< Kernel > &a2, const CGAL::Point_3< Kernel > &b2, const CGAL::Point_3< Kernel > &c2, const CGAL::Point_3< Kernel > &d2) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle in the tetrahedron (a_i, b_i, c_i, d_i) at the edge (a_i, b_i) . More... | |
template<typename Kernel > | |
Comparison_result | CGAL::compare_dihedral_angle (const CGAL::Vector_3< Kernel > &u1, const CGAL::Vector_3< Kernel > &v1, const CGAL::Vector_3< Kernel > &w1, const Kernel::FT &cosine) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), between the vectorial planes defined by (u_1, v_1) and (u_1, w_1) , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). More... | |
template<typename Kernel > | |
Comparison_result | CGAL::compare_dihedral_angle (const CGAL::Vector_3< Kernel > &u1, const CGAL::Vector_3< Kernel > &v1, const CGAL::Vector_3< Kernel > &w1, const CGAL::Vector_3< Kernel > &u2, const CGAL::Vector_3< Kernel > &v2, const CGAL::Vector_3< Kernel > &w2) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle between the vectorial planes defined by (u_i, v_i) and (u_i, w_i) . More... | |
Comparison_result CGAL::compare_dihedral_angle | ( | const CGAL::Point_3< Kernel > & | a1, |
const CGAL::Point_3< Kernel > & | b1, | ||
const CGAL::Point_3< Kernel > & | c1, | ||
const CGAL::Point_3< Kernel > & | d1, | ||
const Kernel::FT & | cosine | ||
) |
#include <CGAL/Kernel/global_functions.h>
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), of the tetrahedron (a1, b1, c1, d1)
at the edge (a1, b1)
, and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\).
The result is the same as compare_dihedral_angle(b1-a1, c1-a1, d1-a1, cosine)
.
a1
, b1
, c1
are not collinear, and a1
, b1
, d1
are not collinear. Comparison_result CGAL::compare_dihedral_angle | ( | const CGAL::Point_3< Kernel > & | a1, |
const CGAL::Point_3< Kernel > & | b1, | ||
const CGAL::Point_3< Kernel > & | c1, | ||
const CGAL::Point_3< Kernel > & | d1, | ||
const CGAL::Point_3< Kernel > & | a2, | ||
const CGAL::Point_3< Kernel > & | b2, | ||
const CGAL::Point_3< Kernel > & | c2, | ||
const CGAL::Point_3< Kernel > & | d2 | ||
) |
#include <CGAL/Kernel/global_functions.h>
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle in the tetrahedron (a_i, b_i, c_i, d_i)
at the edge (a_i, b_i)
.
These two angles are computed in \( [0, \pi]\). The result is the same as compare_dihedral_angle(b1-a1, c1-a1, d1-a1, b2-a2, c2-a2, d2-a2)
.
a_i
, b_i
, c_i
are not collinear, and a_i
, b_i
, d_i
are not collinear. Comparison_result CGAL::compare_dihedral_angle | ( | const CGAL::Vector_3< Kernel > & | u1, |
const CGAL::Vector_3< Kernel > & | v1, | ||
const CGAL::Vector_3< Kernel > & | w1, | ||
const Kernel::FT & | cosine | ||
) |
#include <CGAL/Kernel/global_functions.h>
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), between the vectorial planes defined by (u_1, v_1)
and (u_1, w_1)
, and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\).
u_1
and v_1
are not collinear, and u_1
and w_1
are not collinear. Comparison_result CGAL::compare_dihedral_angle | ( | const CGAL::Vector_3< Kernel > & | u1, |
const CGAL::Vector_3< Kernel > & | v1, | ||
const CGAL::Vector_3< Kernel > & | w1, | ||
const CGAL::Vector_3< Kernel > & | u2, | ||
const CGAL::Vector_3< Kernel > & | v2, | ||
const CGAL::Vector_3< Kernel > & | w2 | ||
) |
#include <CGAL/Kernel/global_functions.h>
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle between the vectorial planes defined by (u_i, v_i)
and (u_i, w_i)
.
These two angles are computed in \( [0, \pi]\).
u_i
and v_i
are not collinear, and u_i
and w_i
are not collinear.