\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - Modular Arithmetic
ModularTraits::ModularImageRepresentative Concept Reference

Definition

This AdaptableUnaryFunction returns a representative in the original type of a given modular image. More precisely, it implements the right inverse of a proper restriction of the homomorphism \( \varphi\), which is implemented by ModularTraits::ModularImage.

Refines:
AdaptableUnaryFunction
See also
ModularTraits

Types

typedef ModularTraits::Type result_type
 
typedef ModularTraits::Residue_type argument_type
 
result_type operator() (const argument_type &x)
 computes \( \varphi^{-1}(x)\).