\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - CGAL and Solvers
SparseLinearAlgebraTraits_d::Matrix Concept Reference

Definition

Types

typedef unspecified_type Index
 Index type.
 
typedef unspecified_type NT
 

Creation

 Matrix (Index dimension)
 Create a square matrix initialized with zeros.
 
 Matrix (Index rows, Index columns)
 Create a rectangular matrix initialized with zeros.
 

Operations

Index row_dimension () const
 Return the matrix number of rows.
 
Index column_dimension () const
 Return the matrix number of columns.
 
NT get_coef (Index row, Index column) const
 Read access to a matrix coefficient. More...
 
void add_coef (Index row, Index column, NT value)
 Write access to a matrix coefficient: a_ij = a_ij + val. More...
 
void set_coef (Index row, Index column, NT value, bool new_coef=false)
 Write access to a matrix coefficient: a_ij = val. More...
 
void swap (Matrix &m)
 swaps the content of *this and m
 
Matrix operator* (const NT &c, const Matrix &M)
 Multiplication with a scalar.
 
Matrix operator+ (const Matrix &M0, const Matrix &M1)
 Sum of two matrices.
 

Member Function Documentation

◆ add_coef()

void SparseLinearAlgebraTraits_d::Matrix::add_coef ( Index  row,
Index  column,
NT  value 
)

Write access to a matrix coefficient: a_ij = a_ij + val.

Precondition
0 <= row < row_dimension()
0 <= column < column_dimension()

◆ get_coef()

NT SparseLinearAlgebraTraits_d::Matrix::get_coef ( Index  row,
Index  column 
) const

Read access to a matrix coefficient.

Precondition
0 <= row < row_dimension()
0 <= column < column_dimension()

◆ set_coef()

void SparseLinearAlgebraTraits_d::Matrix::set_coef ( Index  row,
Index  column,
NT  value,
bool  new_coef = false 
)

Write access to a matrix coefficient: a_ij = val.

Optimization: Users can indicate that the coefficient does not already exist in the matrix by setting new_coef to true.

Precondition
0 <= i < row_dimension()
0 <= j < column_dimension()