\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.3 - Combinatorial Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Dart< d, CMap > Class Template Reference

#include <CGAL/Dart.h>

Definition

The class Dart represents a dD dart.

\( \beta_i\) pointers are coded in a array of d+1 Dart_handle (because we describe also the \( \beta_0\) link). Attributes are associated to each dart by Attribute_handle<i>, one for each non void i-attribute.

Is Model Of:
Dart
Template Parameters
dan integer for the dimension of the dart.
CMapmust be a model of the CombinatorialMap concept.

Complexity

Each \( \beta_i\) link is initialized to CMap::null_dart_handle, and each attribute handle of non void i-attribute is initialized to NULL at the creation of the dart, thus the complexity of the creation is in O(d+1).

The complexity of opposite and other_extremity methods is in O(d+1).

Other methods have all a constant time complexity.

See Also
CombinatorialMap
Examples:
Combinatorial_map/map_3_dynamic_onmerge.cpp, and Combinatorial_map/map_3_with_colored_facets.cpp.

Types

typedef CMap::Dart_handle Dart_handle
 
typedef CMap::Dart_const_handle Dart_const_handle
 
template<unsigned int i>
using Attribute_handle = CMap::Attribute_handle< i >
 
template<unsigned int i>
using Attribute_const_handle = CMap::Attribute_const_handle< i >