\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.3 - 3D Convex Hulls
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Convex_hull_3/incremental_hull_3.cpp
#include <CGAL/Homogeneous.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/algorithm.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/convex_hull_incremental_3.h>
#include <vector>
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz RT;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float RT;
#endif
typedef K::Point_3 Point_3;
typedef CGAL::Polyhedron_3< K> Polyhedron;
int main()
{
CGAL::Random_points_in_sphere_3<Point_3, Creator> gen(100.0);
std::vector<Point_3> V;
// generate 250 points randomly on a sphere of radius 100.0 and copy
// them to a vector
CGAL::cpp11::copy_n( gen, 250, std::back_inserter(V) );
Polyhedron P; // define polyhedron to hold convex hull
// compute convex hull
CGAL::convex_hull_incremental_3( V.begin(), V.end(), P, true);
return 0;
}