\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.3 - 2D Conforming Triangulations and Meshes
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Delaunay_mesh_size_criteria_2< CDT > Class Template Reference

#include <CGAL/Delaunay_mesh_size_criteria_2.h>

Definition

The class Delaunay_mesh_size_criteria_2 is a model for the MeshingCriteria_2 concept.

The shape criterion on triangles is given by a bound \( B\) such that for good triangles \( \frac{r}{l} \le B\) where \( l\) is the shortest edge length and \( r\) is the circumradius of the triangle. By default, \( B=\sqrt{2}\), which is the best bound one can use with the guarantee that the refinement algorithm will terminate. The upper bound \( B\) is related to a lower bound \( \alpha_{min}\) on the minimum angle in the triangle:

\[ \sin{ \alpha_{min} } = \frac{1}{2 B} \]

so \( B=\sqrt{2}\) corresponds to \( \alpha_{min} \ge 20.7\) degrees.

This traits class defines also a size criteria: all segments of all triangles must be shorter than a bound \( S\).

Template Parameters
CDTmust be a 2D constrained Delaunay triangulation.
Is Model Of:
MeshingCriteria_2
Examples:
Mesh_2/mesh_class.cpp, Mesh_2/mesh_global.cpp, and Mesh_2/mesh_with_seeds.cpp.

Creation

 Delaunay_mesh_size_criteria_2 ()
 Default constructor with \( B=\sqrt{2}\). More...
 
 Delaunay_mesh_size_criteria_2 (double b=0.125, double S=0)
 Construct a traits class with bound \( B=\sqrt{\frac{1}{4 b}}\). More...
 

Constructor & Destructor Documentation

Default constructor with \( B=\sqrt{2}\).

No bound on size.

template<typename CDT >
CGAL::Delaunay_mesh_size_criteria_2< CDT >::Delaunay_mesh_size_criteria_2 ( double  b = 0.125,
double  S = 0 
)

Construct a traits class with bound \( B=\sqrt{\frac{1}{4 b}}\).

If \( S \neq0\), the size bound is \( S\). If \( S = 0\), there is no bound on size.