CGAL 4.3 - Number Types
|
Namespaces | |
cpp11 | |
Classes | |
class | Compact_container_base |
class | Compact_container |
class | Compact_container_traits |
class | Compact |
class | Fast |
class | Default |
class | Fourtuple |
class | Cast_function_object |
class | Compare_to_less |
class | Creator_1 |
class | Creator_2 |
class | Creator_3 |
class | Creator_4 |
class | Creator_5 |
class | Creator_uniform_2 |
class | Creator_uniform_3 |
class | Creator_uniform_4 |
class | Creator_uniform_5 |
class | Creator_uniform_6 |
class | Creator_uniform_7 |
class | Creator_uniform_8 |
class | Creator_uniform_9 |
class | Creator_uniform_d |
class | Dereference |
class | Get_address |
class | Identity |
class | Project_facet |
class | Project_next |
class | Project_next_opposite |
class | Project_normal |
class | Project_opposite_prev |
class | Project_plane |
class | Project_point |
class | Project_prev |
class | Project_vertex |
class | In_place_list_base |
class | In_place_list |
class | Const_oneset_iterator |
class | Counting_iterator |
class | Dispatch_or_drop_output_iterator |
class | Dispatch_output_iterator |
class | Emptyset_iterator |
class | Filter_iterator |
class | Insert_iterator |
class | Inverse_index |
class | Join_input_iterator_1 |
class | Join_input_iterator_2 |
class | Join_input_iterator_3 |
class | N_step_adaptor |
class | Oneset_iterator |
class | Random_access_adaptor |
class | Random_access_value_adaptor |
class | Location_policy |
class | Multiset |
class | Object |
class | Sixtuple |
class | Boolean_tag |
struct | Null_functor |
struct | Sequential_tag |
struct | Parallel_tag |
class | Null_tag |
class | Threetuple |
class | Twotuple |
class | Uncertain |
class | Quadruple |
class | Triple |
class | Algebraic_structure_traits |
class | Euclidean_ring_tag |
class | Field_tag |
class | Field_with_kth_root_tag |
class | Field_with_root_of_tag |
class | Field_with_sqrt_tag |
class | Integral_domain_tag |
class | Integral_domain_without_division_tag |
class | Unique_factorization_domain_tag |
class | Coercion_traits |
class | Fraction_traits |
class | Real_embeddable_traits |
class | Modular_traits |
class | Residue |
class | Algebraic_kernel_for_circles_2_2 |
class | Circular_arc_2 |
class | Circular_arc_point_2 |
class | Circular_kernel_2 |
class | Exact_circular_kernel_2 |
class | Line_arc_2 |
class | Polynomial_1_2 |
class | Polynomial_for_circles_2_2 |
class | Root_for_circles_2_2 |
class | Aff_transformation_2 |
class | Aff_transformation_3 |
class | Identity_transformation |
class | Reflection |
class | Rotation |
class | Scaling |
class | Translation |
class | Bbox_2 |
class | Bbox_3 |
class | Cartesian |
class | Cartesian_converter |
class | Circle_2 |
class | Circle_3 |
class | Ambient_dimension |
class | Dimension_tag |
class | Dynamic_dimension_tag |
class | Feature_dimension |
class | Direction_2 |
class | Direction_3 |
class | Exact_predicates_exact_constructions_kernel |
class | Exact_predicates_exact_constructions_kernel_with_sqrt |
class | Exact_predicates_inexact_constructions_kernel |
class | Filtered_kernel_adaptor |
class | Filtered_kernel |
class | Filtered_predicate |
class | Homogeneous |
class | Homogeneous_converter |
class | Iso_cuboid_3 |
class | Iso_rectangle_2 |
class | Kernel_traits |
class | Line_2 |
class | Line_3 |
class | Null_vector |
class | Origin |
class | Plane_3 |
class | Point_2 |
class | Point_3 |
class | Projection_traits_xy_3 |
class | Projection_traits_xz_3 |
class | Projection_traits_yz_3 |
class | Ray_2 |
class | Ray_3 |
class | Segment_2 |
class | Segment_3 |
class | Simple_cartesian |
class | Simple_homogeneous |
class | Sphere_3 |
class | Tetrahedron_3 |
class | Triangle_2 |
class | Triangle_3 |
class | Vector_2 |
class | Vector_3 |
class | Protect_FPU_rounding |
The class Protect_FPU_rounding allows to reduce the number of rounding mode changes when evaluating sequences of interval arithmetic operations. More... | |
class | Set_ieee_double_precision |
The class Set_ieee_double_precision provides a mechanism to set the correct 53 bits precision for a block of code. More... | |
class | Gmpfi |
An object of the class Gmpfi is a closed interval, with endpoints represented as Gmpfr floating-point numbers. More... | |
class | Gmpfr |
An object of the class Gmpfr is a fixed precision floating-point number, based on the Mpfr library. More... | |
class | Gmpq |
An object of the class Gmpq is an arbitrary precision rational number based on the Gmp library. More... | |
class | Gmpz |
An object of the class Gmpz is an arbitrary precision integer based on the Gmp Library. More... | |
class | Gmpzf |
An object of the class Gmpzf is a multiple-precision floating-point number which can represent numbers of the form \( m*2^e\), where \( m\) is an arbitrary precision integer based on the Gmp library, and \( e\) is of type long . More... | |
class | Interval_nt |
The class Interval_nt provides an interval arithmetic number type. More... | |
class | Lazy_exact_nt |
An object of the class Lazy_exact_nt<NT> is able to represent any real embeddable number which NT is able to represent. More... | |
class | MP_Float |
An object of the class MP_Float is able to represent a floating point value with arbitrary precision. More... | |
class | NT_converter |
A number type converter usable as default, for Cartesian_converter and Homogeneous_converter . More... | |
class | Number_type_checker |
Number_type_checker is a number type whose instances store two numbers of types NT1 and NT2 . More... | |
class | Quotient |
An object of the class Quotient<NT> is an element of the field of quotients of the integral domain type NT . More... | |
class | Rational_traits |
The class Rational_traits can be used to determine the type of the numerator and denominator of a rational number type as Quotient , Gmpq , mpq_class or leda_rational . More... | |
class | Root_of_traits |
For a RealEmbeddable IntegralDomain RT , the class template Root_of_traits<RT> associates a type Root_of_2 , which represents algebraic numbers of degree 2 over RT . More... | |
class | Sqrt_extension |
An instance of this class represents an extension of the type NT by one square root of the type ROOT . More... | |
class | Is_valid |
Not all values of a type need to be valid. More... | |
class | Max |
The function object class Max returns the larger of two values. More... | |
class | Min |
The function object class Min returns the smaller of two values. More... | |
Typedefs | |
typedef Interval_nt< false > | Interval_nt_advanced |
This typedef (at namespace CGAL scope) exists for backward compatibility, as well as removing the need to remember the Boolean value for the template parameter. | |
Functions | |
NT | abs (const NT &x) |
result_type | compare (const NT &x, const NT &y) |
result_type | div (const NT1 &x, const NT2 &y) |
void | div_mod (const NT1 &x, const NT2 &y, result_type &q, result_type &r) |
result_type | gcd (const NT1 &x, const NT2 &y) |
result_type | integral_division (const NT1 &x, const NT2 &y) |
NT | inverse (const NT &x) |
result_type | is_negative (const NT &x) |
result_type | is_one (const NT &x) |
result_type | is_positive (const NT &x) |
result_type | is_square (const NT &x) |
result_type | is_square (const NT &x, NT &y) |
result_type | is_zero (const NT &x) |
NT | kth_root (int k, const NT &x) |
result_type | mod (const NT1 &x, const NT2 &y) |
NT | root_of (int k, InputIterator begin, InputIterator end) |
result_type | sign (const NT &x) |
void | simplify (const NT &x) |
NT | sqrt (const NT &x) |
NT | square (const NT &x) |
double | to_double (const NT &x) |
std::pair< double, double > | to_interval (const NT &x) |
NT | unit_part (const NT &x) |
void | Assert_circulator (const C &c) |
void | Assert_iterator (const I &i) |
void | Assert_circulator_or_iterator (const IC &i) |
void | Assert_input_category (const I &i) |
void | Assert_output_category (const I &i) |
void | Assert_forward_category (const IC &ic) |
void | Assert_bidirectional_category (const IC &ic) |
void | Assert_random_access_category (const IC &ic) |
C::difference_type | circulator_distance (C c, C d) |
C::size_type | circulator_size (C c) |
bool | is_empty_range (const IC &i, const IC &j) |
iterator_traits< IC > ::difference_type | iterator_distance (IC ic1, IC ic2) |
Iterator_tag | query_circulator_or_iterator (const I &i) |
Circulator_tag | query_circulator_or_iterator (const C &c) |
Mode | get_mode (std::ios &s) |
Mode | set_ascii_mode (std::ios &s) |
Mode | set_binary_mode (std::ios &s) |
Mode | set_mode (std::ios &s, IO::Mode m) |
Mode | set_pretty_mode (std::ios &s) |
bool | is_ascii (std::ios &s) |
bool | is_binary (std::ios &s) |
bool | is_pretty (std::ios &s) |
Output_rep< T > | oformat (const T &t) |
Input_rep< T > | iformat (const T &t) |
Output_rep< T, F > | oformat (const T &t, F) |
ostream & | operator<< (ostream &os, Class c) |
istream & | operator>> (istream &is, Class c) |
bool | has_in_x_range (const Circular_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
bool | has_in_x_range (const Line_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
bool | has_on (const Circle_2< CircularKernel > &c, const Circular_arc_point_2< CircularKernel > &p) |
OutputIterator | make_x_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
OutputIterator | make_xy_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
Circular_arc_point_2 < CircularKernel > | x_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
OutputIterator | x_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
Circular_arc_point_2 < CircularKernel > | y_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
OutputIterator | y_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
CGAL::Comparison_result | compare_y_to_right (const Circular_arc_2< CircularKernel > &ca1, const Circular_arc_2< CircularKernel > &ca2, Circular_arc_point_2< CircularKernel > &p) |
bool | is_finite (double x) |
Determines whether the argument represents a value in \( \mathbb{R}\). | |
bool | is_finite (float x) |
Determines whether the argument represents a value in \( \mathbb{R}\). | |
bool | is_finite (long double x) |
Determines whether the argument represents a value in \( \mathbb{R}\). | |
template<typename RT , typename OutputIterator > | |
OutputIterator | compute_roots_of_2 (const RT &a, const RT &b, const RT &c, OutputIterator oit) |
The function compute_roots_of_2() solves a univariate polynomial as it is defined by the coefficients given to the function. More... | |
template<typename RT > | |
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (const RT &a, const RT &b, const RT &c, bool s) |
The function make_root_of_2() constructs an algebraic number of degree 2 over a ring number type. More... | |
template<typename RT > | |
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (RT alpha, RT beta, RT gamma) |
The function make_root_of_2() constructs an algebraic number of degree 2 over a ring number type. More... | |
template<typename RT > | |
Root_of_traits< RT >::Root_of_2 | make_sqrt (const RT &x) |
The function make_sqrt() constructs a square root of a given value of type \( RT\). More... | |
template<typename Rational > | |
Rational | simplest_rational_in_interval (double d1, double d2) |
computes the rational number with the smallest denominator in the interval [d1,d2] . More... | |
template<typename Rational > | |
Rational | to_rational (double d) |
computes the rational number that equals d . More... | |
template<typename T > | |
bool | is_valid (const T &x) |
Not all values of a type need to be valid. More... | |
template<typename T > | |
T | max (const T &x, const T &y) |
Returns the larger of two values. More... | |
template<typename T > | |
T | min (const T &x, const T &y) |
Returns the smaller of two values. More... | |