CGAL 4.4 - Algebraic Kernel
|
Constructs AlgebraicKernel_d_1::Algebraic_real_1
.
Types | |
typedef AlgebraicKernel_d_1::Algebraic_real_1 | result_type |
Operations | |
result_type | operator() (int a) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1 initialized to \( a\). | |
result_type | operator() (AlgebraicKernel_d_1::Bound a) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1 initialized to \( a\). | |
result_type | operator() (AlgebraicKernel_d_1::Coefficient a) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1 initialized to \( a\). | |
result_type | operator() (AlgebraicKernel_d_1::Polynomial_1 p, AlgebraicKernel_d_1::size_type i) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1 initialized to the \( i\)-th real root of \( p\). More... | |
result_type | operator() (AlgebraicKernel_d_1::Polynomial_1 p, AlgebraicKernel_d_1::Bound l, AlgebraicKernel_d_1::Bound u) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1 initialized to the only real root of \( p\) in the open interval \( I = (l,u)\). More... | |
result_type AlgebraicKernel_d_1::ConstructAlgebraicReal_1::operator() | ( | AlgebraicKernel_d_1::Polynomial_1 | p, |
AlgebraicKernel_d_1::size_type | i | ||
) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1
initialized to the \( i\)-th real root of \( p\).
The index starts at \( 0\), that is, \( p\) must have at least \( i+1\) real roots.
result_type AlgebraicKernel_d_1::ConstructAlgebraicReal_1::operator() | ( | AlgebraicKernel_d_1::Polynomial_1 | p, |
AlgebraicKernel_d_1::Bound | l, | ||
AlgebraicKernel_d_1::Bound | u | ||
) |
introduces an AlgebraicKernel_d_1::Algebraic_real_1
initialized to the only real root of \( p\) in the open interval \( I = (l,u)\).