\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - Algebraic Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
AlgebraicKernel_d_1::IsCoprime_1 Concept Reference

Definition

Determines whether a given pair of univariate polynomials \( p_1, p_2\) is coprime, namely if \( \deg({\rm gcd}(p_1 ,p_2)) = 0\).

Refines:
AdaptableBinaryFunction
See Also
AlgebraicKernel_d_1::MakeCoprime_1

Types

typedef bool result_type
 
typedef
AlgebraicKernel_d_1::Polynomial_1 
first_argument_type
 
typedef
AlgebraicKernel_d_1::Polynomial_1 
second_argument_type
 

Operations

result_type operator() (const first_argument_type &p1, const second_argument_type &p2)
 Returns true if p1 and p2 are coprime.