\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - Algebraic Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
AlgebraicKernel_d_2::ComputePolynomialX_2 Concept Reference

Definition

Computes a univariate square free polynomial \( p\), such that the first coordinate of a given AlgebraicKernel_d_2::Algebraic_real_2 is a real root of \( p\).

Refines:
AdaptableUnaryFunction
See Also
AlgebraicKernel_d_2::ComputePolynomialY_2

Types

typedef
AlgebraicKernel_d_2::Polynomial_1 
result_type
 
typedef
AlgebraicKernel_d_2::Algebraic_real_2 
argument_type
 

Operations

result_type operator() (argument_type a)
 Computes a univariate square free polynomial \( p\), such that the first coordinate of \( a\) is a real root of \( p\).