\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - 2D Arrangements
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 49–119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[2]

Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Kurt Mehlhorn, and Elmar Schömer. A computational basis for conic arcs and boolean operations on conic polygons. In Rolf Möhring and Rajeev Raman, editors, Algorithms - ESA 2002: 10th Annual European Symposium, volume 2461 of Lecture Notes in Computer Science, pages 174–186, Rome, Italy, September 2002. Springer.

[3]

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[4]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[5]

Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 24, pages 529–562. Chapman & Hall/CRC, 2nd edition, 2004.

[6]

M. Hemmer, M. Kleinbort, and D. Halperin. Improved Implementation of Point Location in General Two-Dimensional Subdivisions. ArXiv e-prints, May 2012.

[7]

K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253–280, 1990.

[8]

David R. Musser and Atul Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley, 1996.

[9]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C++. Cambridge University Press, 2nd edition, 2002.

[10]

R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1(1):51–64, 1991.