\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - 2D Boolean Operations on Nef Polygons Embedded on the Sphere
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Nef_polyhedron_S2< Traits >::Sphere_point Class Reference

#include <CGAL/Nef_polyhedron_S2.h>

Definition

An object p of type Sphere_point<R> is a point on the surface of a unit sphere.

Such points correspond to the nontrivial directions in space and similarly to the equivalence classes of all nontrivial vectors under normalization.

Operations

Access to the coordinates is provided by the following operations. Note that the vector \( (x,y,z)\) is not normalized.

Types

typedef unspecified_type RT
 ring number type.
 

Creation

 Sphere_point ()
 creates some sphere point.
 
 Sphere_point (RT x, RT y, RT z)
 creates a sphere point corresponding to the point of intersection of the ray starting at the origin in direction \( (x,y,z)\) and the surface of \( S_2\).
 

Operations

RT x ()
 the \( x\)-coordinate.
 
RT y ()
 the \( y\)-coordinate.
 
RT z ()
 the \( z\)-coordinate.
 
bool operator== (const Nef_polyhedron_S2< Traits >::Sphere_point &q)
 Equality.
 
bool operator!= (const Nef_polyhedron_S2< Traits >::Sphere_point &q)
 Inequality.
 
Sphere_point antipode ()
 returns the antipode of p.