\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::Invert Concept Reference

Definition

This AdaptableUnaryFunction inverts one variable in a given PolynomialTraits_d::Polynomial_d, that is, for a given polynomial \( p\) it computes \( x^{degree(p)}p(1/x)\).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable.

This functor is provided for efficiency reasons, since this operation just inverts the order of the coefficients with respect to the specified variable.

Refines:

AdaptableUnaryFunction

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d

Types

typedef
PolynomialTraits_d::Polynomial_d 
result_type
 
typedef
PolynomialTraits_d::Polynomial_d 
argument_type
 

Operations

result_type operator() (argument_type p)
 Returns \( x^{degree(p)}p(1/x)\), where x refers to the outermost variable \( x_{d-1}\).
 
result_type operator() (argument_type p, int i)
 Return \( x^{degree(p,i)}p(1/x)\), where x refers to the variable \( x_{i}\). More...
 

Member Function Documentation

result_type PolynomialTraits_d::Invert::operator() ( argument_type  p,
int  i 
)

Return \( x^{degree(p,i)}p(1/x)\), where x refers to the variable \( x_{i}\).

Precondition
\( 0 \leq i < d\).