\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5.1 - Algebraic Foundations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
RingNumberType Concept Reference

Definition

The concept RingNumberType combines the requirements of the concepts IntegralDomainWithoutDivision and RealEmbeddable. A model of RingNumberType can be used as a template parameter for Homogeneous kernels.

Refines:

IntegralDomainWithoutDivision

RealEmbeddable

Has Models:

C++ built-in number types

CGAL::Gmpq

CGAL::Gmpz

CGAL::Interval_nt

CGAL::Interval_nt_advanced

CGAL::Lazy_exact_nt<RingNumberType>

CGAL::MP_Float

CGAL::Gmpzf

CGAL::Quotient<RingNumberType>

CGAL::leda_integer

CGAL::leda_rational

CGAL::leda_bigfloat

CGAL::leda_real

See Also
FieldNumberType