\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5.2 - 2D and Surface Function Interpolation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Interpolation/linear_interpolation_2.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Interpolation_traits_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>
#include <CGAL/interpolation_functions.h>
typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation;
typedef K::FT Coord_type;
typedef K::Point_2 Point;
int main()
{
Delaunay_triangulation T;
std::map<Point, Coord_type, K::Less_xy_2> function_values;
Value_access;
Coord_type a(0.25), bx(1.3), by(-0.7);
for (int y=0 ; y<3 ; y++)
for (int x=0 ; x<3 ; x++){
K::Point_2 p(x,y);
T.insert(p);
function_values.insert(std::make_pair(p,a + bx* x+ by*y));
}
//coordinate computation
K::Point_2 p(1.3,0.34);
std::vector< std::pair< Point, Coord_type > > coords;
Coord_type norm =
(T, p,std::back_inserter(coords)).second;
Coord_type res = CGAL::linear_interpolation(coords.begin(), coords.end(),
norm,
Value_access(function_values));
std::cout << " Tested interpolation on " << p << " interpolation: "
<< res << " exact: " << a + bx* p.x()+ by* p.y()<< std::endl;
std::cout << "done" << std::endl;
return 0;
}