\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5.2 - 2D and Surface Function Interpolation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Interpolation/rn_coordinates_2.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Regular_triangulation_2.h>
#include <CGAL/Regular_triangulation_euclidean_traits_2.h>
#include <CGAL/regular_neighbor_coordinates_2.h>
typedef CGAL::Regular_triangulation_2<Gt> Regular_triangulation;
typedef Regular_triangulation::Weighted_point Weighted_point;
typedef std::vector< std::pair< Weighted_point, K::FT > >
Point_coordinate_vector;
int main()
{
Regular_triangulation rt;
for (int y=0 ; y<3 ; y++)
for (int x=0 ; x<3 ; x++)
rt.insert(Weighted_point(K::Point_2(x,y), 0));
//coordinate computation
Weighted_point wp(K::Point_2(1.2, 0.7),2);
Point_coordinate_vector coords;
std::back_insert_iterator<Point_coordinate_vector>,
K::FT, bool> result =
std::back_inserter(coords));
if(!result.third){
std::cout << "The coordinate computation was not successful."
<< std::endl;
std::cout << "The point (" <<wp.point() << ") lies outside the convex hull."
<< std::endl;
}
K::FT norm = result.second;
std::cout << "Coordinate computation successful." << std::endl;
std::cout << "Normalization factor: " <<norm << std::endl;
std::cout << "done" << std::endl;
return 0;
}