\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5.2 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel_23/MyConstruct_point_2.h
#ifndef MYCONSTRUCT_POINT_2_H
#define MYCONSTRUCT_POINT_2_H
template <typename K, typename OldK>
class MyConstruct_point_2
{
typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename Point_2::Rep Rep;
public:
typedef Point_2 result_type;
// Note : the CGAL::Return_base_tag is really internal CGAL stuff.
// Unfortunately it is needed for optimizing away copy-constructions,
// due to current lack of delegating constructors in the C++ standard.
Rep // Point_2
operator()(CGAL::Return_base_tag, CGAL::Origin o) const
{ return Rep(o); }
Rep // Point_2
operator()(CGAL::Return_base_tag, const RT& x, const RT& y) const
{ return Rep(x, y); }
Rep // Point_2
operator()(CGAL::Return_base_tag, const RT& x, const RT& y, const RT& w) const
{ return Rep(x, y, w); }
Point_2
operator()(const CGAL::Origin&) const
{ return MyPointC2(0, 0, 0); }
Point_2
operator()(const RT& x, const RT& y) const
{
return MyPointC2(x, y, 0);
}
Point_2
operator()(const Line_2& l) const
{
typename OldK::Construct_point_2 base_operator;
Point_2 p = base_operator(l);
return p;
}
Point_2
operator()(const Line_2& l, int i) const
{
typename OldK::Construct_point_2 base_operator;
return base_operator(l, i);
}
// We need this one, as such a functor is in the Filtered_kernel
Point_2
operator()(const RT& x, const RT& y, const RT& w) const
{
if(w != 1){
return MyPointC2(x/w, y/w, 0);
} else {
return MyPointC2(x,y, 0);
}
}
};
#endif //MYCONSTRUCT_POINT_2_H