\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5.2 - 3D Periodic Triangulations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

Manuel Caroli and Monique Teillaud. Computing 3D periodic triangulations. In Proceedings 17th European Symposium on Algorithms, volume 5757 of Lecture Notes in Computer Science, pages 37–48, 2009. Full version available as INRIA Research Report 6823 path |http://hal.inria.fr/inria-00356871|.

[2]

Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in a 3D Delaunay triangulation. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 313–319, 2003.

[3]

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. Internat. J. Found. Comput. Sci., 13:181–199, 2002.

[4]

Jonathan R. Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 76–85, 1998.