\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.5 - Combinatorial Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Combinatorial_map/map_3_marks.cpp
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Combinatorial_map_operations.h>
#include <iostream>
#include <cstdlib>
typedef CMap_3::Dart_handle Dart_handle;
int main()
{
CMap_3 cm;
// 1) Reserve a mark.
int mark = cm.get_new_mark();
if ( mark==-1 )
{
std::cerr<<"No more free mark, exit."<<std::endl;
exit(-1);
}
// 2) Create two tetrahedra.
Dart_handle dh1 = CGAL::make_combinatorial_tetrahedron(cm);
Dart_handle dh2 = CGAL::make_combinatorial_tetrahedron(cm);
// 3) 3-sew them.
cm.sew<3>(dh1, dh2);
// 4) Mark the darts belonging to the first tetrahedron.
for (CMap_3::Dart_of_cell_range<3>::iterator
it(cm.darts_of_cell<3>(dh1).begin()),
itend(cm.darts_of_cell<3>(dh1).end()); it!=itend; ++it)
cm.mark(it, mark);
// 4) Remove the common 2-cell between the two cubes:
// the two tetrahedra are merged.
CGAL::remove_cell<CMap_3, 2>(cm, dh1);
// 5) Thanks to the mark, we know which darts come from the first tetrahedron.
unsigned int res=0;
for (CMap_3::Dart_range::iterator it(cm.darts().begin()),
itend(cm.darts().end()); it!=itend; ++it)
{
if ( cm.is_marked(it, mark) )
++res;
}
std::cout<<"Number of darts from the first tetrahedron: "<<res<<std::endl;
cm.free_mark(mark);
return EXIT_SUCCESS;
}