CGAL 4.5 - Optimal Distances
|
#include <CGAL/Polytope_distance_d.h>
An object of the class Polytope_distance_d
represents the (squared) distance between two convex polytopes, given as the convex hulls of two finite point sets in \( d\)-dimensional Euclidean space \( \E^d\).
For point sets \( P\) and \( Q\) we denote by \( pd(P,Q)\) the distance between the convex hulls of \( P\) and \( Q\). Note that \( pd(P,Q)\) can be degenerate, i.e. \( pd(P,Q)=\infty\) if \( P\) or \( Q\) is empty.
Two inclusion-minimal subsets \( S_P\) of \( P\) and \( S_Q\) of \( Q\) with \( pd(S_P,S_Q)=pd(P,Q)\) are called pair of support sets, the points in \( S_P\) and \( S_Q\) are the support points. A pair of support sets has size at most \( d+2\) (by size we mean \( |S_P|+|S_Q|\)). The distance between the two polytopes is realized by a pair of points \( p\) and \( q\) lying in the convex hull of \( S_P\) and \( S_Q\), repectively, i.e. \( \sqrt{||p-q||}=pd(P,Q)\). In general, neither the support sets nor the realizing points are necessarily unique.
The underlying algorithm can cope with all kinds of input, e.g. \( P\) and \( Q\) may be in non-convex position or points may occur more than once. The algorithm computes a pair of support sets \( S_P\) and \( S_Q\) with realizing points \( p\) and \( q\) which remain fixed until the next set, insert, or clear operation.
Traits | must be a model for PolytopeDistanceDTraits . |
We provide the models Polytope_distance_d_traits_2
, Polytope_distance_d_traits_3
, and Polytope_distance_d_traits_d
using the two-, three-, and \( d\)-dimensional CGAL kernel, respectively.
CGAL::Polytope_distance_d_traits_2<K,ET,NT>
CGAL::Polytope_distance_d_traits_3<K,ET,NT>
CGAL::Polytope_distance_d_traits_d<K,ET,NT>
PolytopeDistanceDTraits
Implementation
The problem of finding the distance between two convex polytopes given as the convex hulls of two finite point sets can be formulated as an optimization problem with linear constraints and a convex quadratic objective function. The solution is obtained using our exact solver for quadratic programs [2].
The creation time is almost always linear in the number of points. Access functions and predicates take constant time, inserting a point might take up to linear time. The clear operation and the check for validity each take linear time.
Related Functions | |
(Note that these are not member functions.) | |
std::ostream & | operator<< (std::ostream &os, const Polytope_distance_d< Traits > &poly_dist) |
writes poly_dist to output stream os . More... | |
std::istream & | operator>> (std::istream &is, Polytope_distance_d< Traits > poly_dist &) |
reads poly_dist from input stream is . More... | |
Types | |
typedef unspecified_type | Point |
typedef to Traits::Point_d . More... | |
typedef unspecified_type | FT |
typedef to Traits::FT . More... | |
typedef unspecified_type | ET |
typedef to Traits::ET . More... | |
typedef unspecified_type | Point_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type Point . More... | |
typedef unspecified_type | Support_point_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type Point . More... | |
typedef unspecified_type | Support_point_index_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type int . More... | |
typedef unspecified_type | Coordinate_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type ET . More... | |
Creation | |
Polytope_distance_d (const Traits &traits=Traits(), int verbose=0, std::ostream &stream=std::cout) | |
initializes poly_dist to \( pd(\emptyset, \emptyset)\). | |
template<class InputIterator1 , class InputIterator2 > | |
Polytope_distance_d (InputIterator1 p_first, InputIterator1 p_last, InputIterator2 q_first, InputIterator2 q_last, const Traits &traits=Traits(), int verbose=0, std::ostream &stream=std::cout) | |
initializes poly_dist to \( pd(P,Q)\) with \( P\) and \( Q\) being the sets of points in the range [p_first ,p_last ) and [q_first ,q_last ), respectively. More... | |
Access Functions | |
int | ambient_dimension () const |
returns the dimension of the points in \( P\) and \( Q\). More... | |
int | number_of_points () const |
returns the number of all points of poly_dist , i.e. \( |P|+|Q|\). | |
int | number_of_points_p () const |
returns the number of points in \( P\). | |
int | number_of_points_q () const |
returns the number of points in \( Q\). | |
int | number_of_support_points () const |
returns the number of support points of poly_dist , i.e. \( |S_P|+|S_Q|\). | |
int | number_of_support_points_p () const |
returns the number of support points in \( S_P\). | |
int | number_of_support_points_q () const |
returns the number of support points in \( S_Q\). | |
Point_iterator | points_p_begin () const |
returns an iterator referring to the first point in \( P\). | |
Point_iterator | points_p_end () const |
returns the corresponding past-the-end iterator. | |
Point_iterator | points_q_begin () const |
returns an iterator referring to the first point in \( Q\). | |
Point_iterator | points_q_end () const |
returns the corresponding past-the-end iterator. | |
Support_point_iterator | support_points_p_begin () const |
returns an iterator referring to the first support point in \( S_P\). | |
Support_point_iterator | support_points_p_end () const |
returns the corresponding past-the-end iterator. | |
Support_point_iterator | support_points_q_begin () const |
returns an iterator referring to the first support point in \( S_Q\). | |
Support_point_iterator | support_points_q_end () const |
returns the corresponding past-the-end iterator. | |
Support_point_index_iterator | support_points_p_indices_begin () const |
returns an iterator referring to the index of the first support point in \( P\). | |
Support_point_index_iterator | support_points_p_indices_end () const |
returns the corresponding past-the-end iterator. | |
Support_point_index_iterator | support_points_q_indices_begin () const |
returns an iterator referring to the index of the first support point in \( Q\). | |
Support_point_index_iterator | support_points_q_indices_end () const |
returns the corresponding past-the-end iterator. | |
Point | realizing_point_p () const |
returns the realizing point of \( P\). More... | |
Point | realizing_point_q () const |
returns the realizing point of \( Q\). More... | |
FT | squared_distance () const |
returns the squared distance of poly_dist , i.e. \( (pd(P,Q))^2\). More... | |
Coordinate_iterator | realizing_point_p_coordinates_begin () const |
returns an iterator referring to the first coordinate of the realizing point of \( P\). More... | |
Coordinate_iterator | realizing_point_p_coordinates_end () const |
returns the corresponding past-the-end iterator. | |
Coordinate_iterator | realizing_point_q_coordinates_begin () const |
returns an iterator referring to the first coordinate of the realizing point of \( Q\). More... | |
Coordinate_iterator | realizing_point_q_coordinates_end () const |
returns the corresponding past-the-end iterator. | |
ET | squared_distance_numerator () const |
returns the numerator of the squared distance of poly_dist . | |
ET | squared_distance_denominator () const |
returns the denominator of the squared distance of poly_dist . | |
Predicates | |
bool | is_finite () const |
returns true , if \( pd(P,Q)\) is finite, i.e. none of the two polytopes is empty. | |
bool | is_zero () const |
returns true , if \( pd(P,Q)\) is zero, i.e. the two polytopes intersect (this implies degeneracy). | |
bool | is_degenerate () const |
returns true , iff \( pd(P,Q)\) is degenerate, i.e. \( pd(P,Q)\) is not finite. | |
Modifiers | |
void | clear () |
resets poly_dist to \( pd(\emptyset, \emptyset)\). | |
template<class InputIterator1 , class InputIterator2 > | |
void | set (InputIterator1 p_first, InputIterator1 p_last, InputIterator2 q_first, InputIterator2 q_last) |
sets poly_dist to \( pd(P,Q)\) with \( P\) and \( Q\) being the sets of points in the ranges [p_first ,p_last ) and [q_first ,q_last ), respectively. More... | |
template<class InputIterator > | |
void | set_p (InputIterator p_first, InputIterator p_last) |
sets poly_dist to \( pd(P,Q)\) with \( P\) being the set of points in the range [p_first ,p_last ) ( \( Q\) remains unchanged). More... | |
template<class InputIterator > | |
void | set_q (InputIterator q_first, InputIterator q_last) |
sets poly_dist to \( pd(P,Q)\) with \( Q\) being the set of points in the range [q_first ,q_last ) ( \( P\) remains unchanged). More... | |
void | insert_p (const Point &p) |
inserts p into \( P\). More... | |
void | insert_q (const Point &q) |
inserts q into \( Q\). More... | |
template<class InputIterator1 , class InputIterator2 > | |
void | insert (InputIterator1 p_first, InputIterator1 p_last, InputIterator2 q_first, InputIterator2 q_last) |
inserts the points in the range [p_first ,p_last ) and [q_first ,q_last ) into \( P\) and \( Q\), respectively, and recomputes the (squared) distance. More... | |
template<class InputIterator > | |
void | insert_p (InputIterator p_first, InputIterator p_last) |
inserts the points in the range [p_first ,p_last ) into \( P\) and recomputes the (squared) distance ( \( Q\) remains unchanged). More... | |
template<class InputIterator > | |
void | insert_q (InputIterator q_first, InputIterator q_last) |
inserts the points in the range [q_first ,q_last ) into \( Q\) and recomputes the (squared) distance ( \( P\) remains unchanged). More... | |
Validity Check | |
bool | is_valid (bool verbose=false, int level=0) const |
returns true , iff poly_dist is valid. More... | |
Miscellaneous | |
const Traits & | traits () const |
returns a const reference to the traits class object. | |
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::Coordinate_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type ET
.
Used to access the coordinates of the realizing points.
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::ET |
typedef to Traits::ET
.
Number type used to do the exact computations in the underlying solver for quadratic programs (cf. Implementation).
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::FT |
typedef to Traits::FT
.
Number type used to return the squared distance between the two polytopes.
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::Point |
typedef to Traits::Point_d
.
Point type used to represent the input points.
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::Point_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type Point
.
Used to access the points of the two polytopes.
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::Support_point_index_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type int
.
Used to access the indices of the support points in the provided input order (starting from 0 in both point sets).
typedef unspecified_type CGAL::Polytope_distance_d< Traits >::Support_point_iterator |
non-mutable model of the STL concept RandomAccessIterator with value type Point
.
Used to access the support points.
CGAL::Polytope_distance_d< Traits >::Polytope_distance_d | ( | InputIterator1 | p_first, |
InputIterator1 | p_last, | ||
InputIterator2 | q_first, | ||
InputIterator2 | q_last, | ||
const Traits & | traits = Traits() , |
||
int | verbose = 0 , |
||
std::ostream & | stream = std::cout |
||
) |
initializes poly_dist
to \( pd(P,Q)\) with \( P\) and \( Q\) being the sets of points in the range [p_first
,p_last
) and [q_first
,q_last
), respectively.
InputIterator1
and InputIterator2
is Point
. verbose
is set to \( 1\), \( 2\), or \( 3\) then some, more, or full verbose output of the underlying solver for quadratic programs is written to stream
, resp. int CGAL::Polytope_distance_d< Traits >::ambient_dimension | ( | ) | const |
returns the dimension of the points in \( P\) and \( Q\).
If poly_dist
is \( pd(\emptyset, \emptyset)\), the ambient dimension is \( -1\).
void CGAL::Polytope_distance_d< Traits >::insert | ( | InputIterator1 | p_first, |
InputIterator1 | p_last, | ||
InputIterator2 | q_first, | ||
InputIterator2 | q_last | ||
) |
inserts the points in the range [p_first
,p_last
) and [q_first
,q_last
) into \( P\) and \( Q\), respectively, and recomputes the (squared) distance.
InputIterator1
and InputIterator2
is Point
. poly_dist
is not \( pd(\emptyset, \emptyset)\), this dimension must be equal to poly_dist
.ambient_dimension()
. void CGAL::Polytope_distance_d< Traits >::insert_p | ( | const Point & | p) |
inserts p
into \( P\).
p
equals poly_dist
.ambient_dimension()
if poly_dist
is not \( pd(\emptyset, \emptyset)\). void CGAL::Polytope_distance_d< Traits >::insert_p | ( | InputIterator | p_first, |
InputIterator | p_last | ||
) |
inserts the points in the range [p_first
,p_last
) into \( P\) and recomputes the (squared) distance ( \( Q\) remains unchanged).
InputIterator
is Point
. poly_dist
is not empty, this dimension must be equal to poly_dist
.ambient_dimension()
. void CGAL::Polytope_distance_d< Traits >::insert_q | ( | const Point & | q) |
inserts q
into \( Q\).
q
equals poly_dist
.ambient_dimension()
if poly_dist
is not \( pd(\emptyset, \emptyset)\). void CGAL::Polytope_distance_d< Traits >::insert_q | ( | InputIterator | q_first, |
InputIterator | q_last | ||
) |
inserts the points in the range [q_first
,q_last
) into \( Q\) and recomputes the (squared) distance ( \( P\) remains unchanged).
InputIterator
is Point
. poly_dist
is not empty, this dimension must be equal to poly_dist
.ambient_dimension()
. bool CGAL::Polytope_distance_d< Traits >::is_valid | ( | bool | verbose = false , |
int | level = 0 |
||
) | const |
returns true
, iff poly_dist
is valid.
If verbose
is true
, some messages concerning the performed checks are written to standard error stream. The second parameter level
is not used, we provide it only for consistency with interfaces of other classes.
An object poly_dist
is valid, iff \( ldots\)
poly_dist
contains all points of its defining set \( P\),poly_dist
is the smallest sphere containing its support set \( S\),Point CGAL::Polytope_distance_d< Traits >::realizing_point_p | ( | ) | const |
returns the realizing point of \( P\).
ET
to RT
is available. Coordinate_iterator CGAL::Polytope_distance_d< Traits >::realizing_point_p_coordinates_begin | ( | ) | const |
returns an iterator referring to the first coordinate of the realizing point of \( P\).
Point CGAL::Polytope_distance_d< Traits >::realizing_point_q | ( | ) | const |
returns the realizing point of \( Q\).
ET
to RT
is available. Coordinate_iterator CGAL::Polytope_distance_d< Traits >::realizing_point_q_coordinates_begin | ( | ) | const |
returns an iterator referring to the first coordinate of the realizing point of \( Q\).
void CGAL::Polytope_distance_d< Traits >::set | ( | InputIterator1 | p_first, |
InputIterator1 | p_last, | ||
InputIterator2 | q_first, | ||
InputIterator2 | q_last | ||
) |
sets poly_dist
to \( pd(P,Q)\) with \( P\) and \( Q\) being the sets of points in the ranges [p_first
,p_last
) and [q_first
,q_last
), respectively.
InputIterator1
and InputIterator2
is Point
. void CGAL::Polytope_distance_d< Traits >::set_p | ( | InputIterator | p_first, |
InputIterator | p_last | ||
) |
sets poly_dist
to \( pd(P,Q)\) with \( P\) being the set of points in the range [p_first
,p_last
) ( \( Q\) remains unchanged).
InputIterator
is Point
. poly_dist
.ambient_dimension()
if \( Q\) is not empty. void CGAL::Polytope_distance_d< Traits >::set_q | ( | InputIterator | q_first, |
InputIterator | q_last | ||
) |
sets poly_dist
to \( pd(P,Q)\) with \( Q\) being the set of points in the range [q_first
,q_last
) ( \( P\) remains unchanged).
InputIterator
is Point
. poly_dist
.ambient_dimension()
if \( P\) is not empty. FT CGAL::Polytope_distance_d< Traits >::squared_distance | ( | ) | const |
returns the squared distance of poly_dist
, i.e. \( (pd(P,Q))^2\).
ET
to RT
is available.
|
related |
writes poly_dist
to output stream os
.
Point_d
.
|
related |
reads poly_dist
from input stream is
.
Point_d
.