\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.1 - Algebraic Foundations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
AlgebraicStructureTraits_::UnitPart Concept Reference

Definition

This AdaptableUnaryFunction computes the unit part of a given ring element.

The mathematical definition of unit part is as follows: Two ring elements \( a\) and \( b\) are said to be associate if there exists an invertible ring element (i.e. a unit) \( u\) such that \( a = ub\). This defines an equivalence relation. We can distinguish exactly one element of every equivalence class as being unit normal. Then each element of a ring possesses a factorization into a unit (called its unit part) and a unit-normal ring element (called its unit normal associate).

For the integers, the non-negative numbers are by convention unit normal, hence the unit-part of a non-zero integer is its sign. For a Field, every non-zero element is a unit and is its own unit part, its unit normal associate being one. The unit part of zero is, by convention, one.

Refines:
AdaptableUnaryFunction
See Also
AlgebraicStructureTraits

Types

typedef unspecified_type result_type
 Is AlgebraicStructureTraits::Type.
 
typedef unspecified_type argument_type
 Is AlgebraicStructureTraits::Type.
 

Operations

result_type operator() (argument_type x)
 returns the unit part of \( x\).