\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.1 - Geometric Object Generators
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
RandomConvexSetTraits_2 Concept Reference

Definition

The concept RandomConvexSetTraits_2 describes the requirements of the traits class for the function random_convex_set_2().

Has Models:
CGAL::Random_convex_set_traits_2<Kernel>

Types

typedef unspecified_type Point_2
 point class.
 
typedef unspecified_type FT
 class used for doing computations on point and vector coordinates (has to fulfill field type requirements).
 
typedef unspecified_type Sum
 AdaptableBinaryFunction class: Point_2 \( \times\) Point_2 \( \rightarrow\) Point_2. More...
 
typedef unspecified_type Scale
 AdaptableBinaryFunction class: Point_2 \( \times\) FT \( \rightarrow\) Point_2. More...
 
typedef unspecified_type Max_coordinate
 AdaptableUnaryFunction class: Point_2 \( \rightarrow\) FT. More...
 
typedef unspecified_type Angle_less
 AdaptableBinaryFunction class: Point_2 \( \times\) Point_2 \( \rightarrow\) bool. More...
 

Operations

Point_2 origin () const
 return origin (neutral element for the Sum operation).
 

Member Typedef Documentation

AdaptableBinaryFunction class: Point_2 \( \times\) Point_2 \( \rightarrow\) bool.

It returns true, iff the angle of the direction corresponding to the first argument with respect to the positive \( x\)-axis is less than the angle of the direction corresponding to the second argument.

AdaptableUnaryFunction class: Point_2 \( \rightarrow\) FT.

Max_coordinate(p) returns the coordinate of p with largest absolute value.

AdaptableBinaryFunction class: Point_2 \( \times\) FT \( \rightarrow\) Point_2.

Scale(p,k) returns the point that results from scaling the vector corresponding to p by a factor of k.

AdaptableBinaryFunction class: Point_2 \( \times\) Point_2 \( \rightarrow\) Point_2.

It returns the point that results from adding the vectors corresponding to both arguments.