\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.1 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::UnivariateContentUpToConstantFactor Concept Reference

Definition

This AdaptableUnaryFunction computes the content of a PolynomialTraits_d::Polynomial_d with respect to the univariate (recursive) view on the polynomial up to a constant factor (utcf), that is, it computes the \( \mathrm{gcd\_utcf}\) of all coefficients with respect to one variable.

Remark: This is called UnivariateContentUpToConstantFactor for symmetric reasons with respect to PolynomialTraits_d::UnivariateContent and PolynomialTraits_d::MultivariateContent. However, a concept PolynomialTraits_d::MultivariateContentUpToConstantFactor does not exist since the result is trivial.

Refines:

AdaptableUnaryFunction

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::GcdUpToConstantFactor

Types

typedef
PolynomialTraits_d::Coefficient_type 
result_type
 
typedef
PolynomialTraits_d::Polynomial_d 
argument_type
 

Operations

result_type operator() (first_argument_type p)
 Computes the content up to a constant factor of \( p\) with respect to the outermost variable \( x_{d-1}\).