\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.2 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel::SideOfBoundedSphere_3 Concept Reference

Definition

Operations

A model of this concept must provide:

Bounded_side operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &s, const Kernel::Point_3 &t)
 returns the relative position of point t to the sphere defined by p, q, r, and s. More...
 
Bounded_side operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &t)
 returns the position of the point t relative to the sphere passing through p, q, and r and whose center is in the plane defined by these three points.
 
Bounded_side operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &t)
 returns the position of the point t relative to the sphere that has pq as its diameter.
 

Member Function Documentation

Bounded_side Kernel::SideOfBoundedSphere_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
const Kernel::Point_3 r,
const Kernel::Point_3 s,
const Kernel::Point_3 t 
)

returns the relative position of point t to the sphere defined by p, q, r, and s.

The order of the points p, q, r, and s does not matter.

Precondition
p, q, r and s are not coplanar.