\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.3 - Algebraic Foundations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Field Concept Reference

Definition

A model of Field is an IntegralDomain in which every non-zero element has a multiplicative inverse. Thus, one can divide by any non-zero element. Hence division is defined for any divisor != 0. For a Field, we require this division operation to be available through operators / and /=.

Moreover, CGAL::Algebraic_structure_traits< Field > is a model of AlgebraicStructureTraits providing:

Refines:
IntegralDomain
See Also
IntegralDomainWithoutDivision
IntegralDomain
UniqueFactorizationDomain
EuclideanRing
Field
FieldWithSqrt
FieldWithKthRoot
FieldWithRootOf
AlgebraicStructureTraits

Operations

Field operator/ (const Field &a, const Field &b)
 
Field operator/= (const Field &b)