\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.3 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel::ConstructBaseVector_3 Concept Reference

Definition

Refines:
AdaptableFunctor (with two arguments)
See Also
CGAL::Plane_3<Kernel>

Operations

A model of this concept must provide:

Kernel::Vector_3 operator() (const Kernel::Plane_3 &h, int index)
 when index == 1, returns a vector b1 that is orthogonal to the normal n to plane h; when index == 2, returns a vector b2 that is orthogonal to n and b1 and such that for an arbitrary point p on the plane h, the orientation of p, p + b1, p + b2, and p + n is positive.