\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.3 - dD Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel_d::Side_of_oriented_sphere_d Concept Reference

Definition

Operations

A model of this concept must provide:

template<class ForwardIterator >
Bounded_side operator() (ForwardIterator first, ForwardIterator last, const Kernel_d::Point_d &p)
 returns the relative position of point p to the oriented sphere defined by the points in A = tuple [first,last) The order of the points in \( A\) is important, since it determines the orientation of the implicitly constructed sphere. More...
 

Member Function Documentation

template<class ForwardIterator >
Bounded_side Kernel_d::Side_of_oriented_sphere_d::operator() ( ForwardIterator  first,
ForwardIterator  last,
const Kernel_d::Point_d p 
)

returns the relative position of point p to the oriented sphere defined by the points in A = tuple [first,last) The order of the points in \( A\) is important, since it determines the orientation of the implicitly constructed sphere.

If the points in \( A\) are positively oriented, the positive side is the bounded interior of the sphere.

Precondition
A contains \( d+1\) points in \( d\)-space.
Requires:
The value type of ForwardIterator is Kernel_d::Point_d.