\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6.3 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::IntegralDivisionUpToConstantFactor Concept Reference

Definition

This AdaptableBinaryFunction computes the integral division of two polynomials of type PolynomialTraits_d::Polynomial_d up to a constant factor (utcf) .

Precondition
\( g\) divides \( f\) in \( Q(R)[x_0,\dots,x_{d-1}]\), where \( Q(R)\) is the quotient field of the base ring \( R\), PolynomialTraits_d::Innermost_coefficient_type.
Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::GcdUpToConstantFactor

Types

typedef
PolynomialTraits_d::Polynomial_d 
result_type
 
typedef
PolynomialTraits_d::Polynomial_d 
first_argument_type
 
typedef
PolynomialTraits_d::Polynomial_d 
second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Computes \( f/g\) up to a constant factor.