\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6 - dD Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel_d::Orientation_d Concept Reference

Definition

Operations

A model of this concept must provide:

template<class ForwardIterator >
Orientation operator() (ForwardIterator first, ForwardIterator last)
 determines the orientation of the points of the tuple A = tuple [first,last) where \( A\) consists of \( d + 1\) points in \( d\)-space. More...
 

Member Function Documentation

template<class ForwardIterator >
Orientation Kernel_d::Orientation_d::operator() ( ForwardIterator  first,
ForwardIterator  last 
)

determines the orientation of the points of the tuple A = tuple [first,last) where \( A\) consists of \( d + 1\) points in \( d\)-space.

This is the sign of the determinant

\[ \left| \begin{array}{cccc} 1 & 1 & 1 & 1 \\ A[0] & A[1] & \dots& A[d] \end{array} \right| \]

where A[i] denotes the Cartesian coordinate vector of the \( i\)-th point in \( A\).

Precondition
size [first,last) == d+1 and A[i].dimension() == d \( \forall0 \leq i \leq d\).
Requires:
The value type of ForwardIterator is Kernel_d::Point_d.