\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.8.1 - Algebraic Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
AlgebraicKernel_d_2::IsCoprime_2 Concept Reference

Definition

Computes whether a given pair of bivariate polynomials is coprime.

Refines:
AdaptableBinaryFunction
See Also
AlgebraicKernel_d_2::MakeCoprime_2

Types

typedef bool result_type
 
typedef
AlgebraicKernel_d_2::Polynomial_2 
first_argument_type
 
typedef
AlgebraicKernel_d_2::Polynomial_2 
second_argument_type
 

Operations

result_type operator() (const first_argument_type &p1, const second_argument_type &p2)
 Computes whether \( f\) and \( g\) are coprime.