|
concept | EnvelopeDiagram_1 |
| This concept defines the representation of an envelope diagram of a set of planar curve. The envelope diagram is a subdivision of the \( x\)-axis into 0-dimensional cells (vertices) and 1-dimensional cells (edges), such that the identity of the curves that induce the lower envelope (or the upper envelope) over each cell is fixed. More...
|
|
concept | EnvelopeDiagramEdge |
| An edge record in an envelope diagram, which represents a continuous portion of the \( x\)-axis. It is associated with a (possibly empty) set of curves that induce the envelope over this portion of the \( x\)-axis. Note that all curves in this set overlap over the interval represented by the edge. More...
|
|
concept | EnvelopeDiagramVertex |
| A vertex record in an envelope diagram. It is always associated with a point on the lower (upper) envelope of a non-empty set of curves. A vertex is also associated with a set of \( x\)-monotone curves that induce the envelope over this point. It is incident to two edges, one lying to its left and the other to its right. More...
|
|