CGAL 4.8.2 - 3D Spherical Geometry Kernel
|
Operations | |
Comparison_result | operator() (const SphericalKernel::Circular_arc_3 &a0, const SphericalKernel::Circular_arc_3 &a1, const SphericalKernel::Vector_3 &m) |
compares the \( z\)-coordinates of the two intersections points of a0 and a1 with the meridian defined by m (see Section Spherical Kernel Objects). More... | |
Comparison_result | operator() (const SphericalKernel::Circular_arc_point_3 &p, const SphericalKernel::Circular_arc_3 &a) |
given a meridian anchored at the poles of the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object , and passing through point p , compares the \( z\)-coordinate of point p and that of the intersection of the meridian with a . More... | |
Comparison_result SphericalKernel::CompareZAtTheta_3::operator() | ( | const SphericalKernel::Circular_arc_3 & | a0, |
const SphericalKernel::Circular_arc_3 & | a1, | ||
const SphericalKernel::Vector_3 & | m | ||
) |
compares the \( z\)-coordinates of the two intersections points of a0
and a1
with the meridian defined by m
(see Section Spherical Kernel Objects).
a0
and a1
lie on the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object
. m
\( \neq(0,0,0)\) and the \( z\)-coordinate of m
is \( 0\). Arcs a0
and a1
are \( \theta\)-monotone and both intersected by the meridian defined by m
(see Section Spherical Kernel Objects). Comparison_result SphericalKernel::CompareZAtTheta_3::operator() | ( | const SphericalKernel::Circular_arc_point_3 & | p, |
const SphericalKernel::Circular_arc_3 & | a | ||
) |
given a meridian anchored at the poles of the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object
, and passing through point p
, compares the \( z\)-coordinate of point p
and that of the intersection of the meridian with a
.
a
and p
lie on the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object
, arc a
is \( \theta\)-monotone and the meridian passing through p
intersects arc a
.