\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.8.2 - dD Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel_d::Component_accessor_d Concept Reference

Definition

Operations

A model of this concept must provide:

int dimension (const Kernel_d::Point_d &p)
 returns the dimension of \( p\).
 
Kernel_d::RT homogeneous (const Kernel_d::Point_d &p, int i)
 returns the ith homogeneous coordinate of \( p\). More...
 
Kernel_d::FT cartesian (const Kernel_d::Point_d &p, int i)
 returns the ith Cartesian coordinate of \( p\). More...
 

Member Function Documentation

Kernel_d::FT Kernel_d::Component_accessor_d::cartesian ( const Kernel_d::Point_d p,
int  i 
)

returns the ith Cartesian coordinate of \( p\).

Precondition
0 <= i < dimension(p).
Kernel_d::RT Kernel_d::Component_accessor_d::homogeneous ( const Kernel_d::Point_d p,
int  i 
)

returns the ith homogeneous coordinate of \( p\).

Precondition
0 <= i <= dimension(p).