CGAL 4.8.2 - 2D Conforming Triangulations and Meshes
|
#include <CGAL/Delaunay_mesh_size_criteria_2.h>
The class Delaunay_mesh_size_criteria_2
is a model for the MeshingCriteria_2
concept.
The shape criterion on triangles is given by a bound \( B\) such that for good triangles \( \frac{r}{l} \le B\) where \( l\) is the shortest edge length and \( r\) is the circumradius of the triangle. By default, \( B=\sqrt{2}\), which is the best bound one can use with the guarantee that the refinement algorithm will terminate. The upper bound \( B\) is related to a lower bound \( \alpha_{min}\) on the minimum angle in the triangle:
\[ \sin{ \alpha_{min} } = \frac{1}{2 B} \]
so \( B=\sqrt{2}\) corresponds to \( \alpha_{min} \ge 20.7\) degrees.
This traits class defines also a size criteria: all segments of all triangles must be shorter than a bound \( S\).
CDT | must be a 2D constrained Delaunay triangulation. |
Creation | |
Delaunay_mesh_size_criteria_2 () | |
Default constructor with \( B=\sqrt{2}\). More... | |
Delaunay_mesh_size_criteria_2 (double b=0.125, double S=0) | |
Construct a traits class with bound \( B=\sqrt{\frac{1}{4 b}}\). More... | |
CGAL::Delaunay_mesh_size_criteria_2< CDT >::Delaunay_mesh_size_criteria_2 | ( | ) |
Default constructor with \( B=\sqrt{2}\).
No bound on size.
CGAL::Delaunay_mesh_size_criteria_2< CDT >::Delaunay_mesh_size_criteria_2 | ( | double | b = 0.125 , |
double | S = 0 |
||
) |
Construct a traits class with bound \( B=\sqrt{\frac{1}{4 b}}\).
If \( S \neq0\), the size bound is \( S\). If \( S = 0\), there is no bound on size.