\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.8.2 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::IsZeroAtHomogeneous Concept Reference

Definition

This AdaptableFunctor returns whether a PolynomialTraits_d::Polynomial_d \( p\) is zero at a given homogeneous point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.

For instance the polynomial \( p(x_0,x_1) = x_0^2x_1^3+x_1^4\) is interpreted as the homogeneous polynomial \( p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1\).

Refines:

AdaptableFunctor

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d

Types

typedef bool result_type
 

Operations

template<class InputIterator >
result_type operator() (PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end)
 Computes whether \( p\) is zero at the homogeneous point given by the iterator range, where begin is referring to the innermost variable. More...
 

Member Function Documentation

template<class InputIterator >
result_type PolynomialTraits_d::IsZeroAtHomogeneous::operator() ( PolynomialTraits_d::Polynomial_d  p,
InputIterator  begin,
InputIterator  end 
)

Computes whether \( p\) is zero at the homogeneous point given by the iterator range, where begin is referring to the innermost variable.

Precondition
(end-begin==PolynomialTraits_d::d+1)
std::iterator_traits< InputIterator >::value_type is ExplicitInteroperable with PolynomialTraits_d::Innermost_coefficient_type.