\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - Algebraic Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
AlgebraicKernel_d_1::NumberOfSolutions_1 Concept Reference

Definition

Computes the number of real solutions of the given univariate polynomial.

Refines:
AdaptableUnaryFunction
See Also
AlgebraicKernel_d_1::ConstructAlgebraicReal_1

Types

A model of this type must provide:

typedef
AlgebraicKernel_d_1::size_type 
result_type
 
typedef
AlgebraicKernel_d_1::Polynomial_1 
argument_type
 

Operations

result_type operator() (argument_type p)
 Returns the number of real solutions of \( p\). More...
 

Member Function Documentation

result_type AlgebraicKernel_d_1::NumberOfSolutions_1::operator() ( argument_type  p)

Returns the number of real solutions of \( p\).

Precondition
\( p\) is square free.