CGAL 4.9.1 - Geometric Object Generators
|
#include <CGAL/point_generators_2.h>
The class Points_on_segment_2
is a generator for points on a segment whose endpoints are specified upon construction.
The points are equally spaced.
CGAL::cpp11::copy_n()
CGAL::Counting_iterator
CGAL::points_on_segment<Point_2>
CGAL::Random_points_in_disc_2<Point_2, Creator>
CGAL::Random_points_in_square_2<Point_2, Creator>
CGAL::Random_points_in_triangle_2<Point_2, Creator>
CGAL::Random_points_on_circle_2<Point_2, Creator>
CGAL::Random_points_on_segment_2<Point_2, Creator>
CGAL::Random_points_on_square_2<Point_2, Creator>
CGAL::random_selection()
std::random_shuffle
Types | |
typedef std::input_iterator_tag | iterator_category |
typedef Point_2 | value_type |
typedef std::ptrdiff_t | difference_type |
typedef const Point_2 * | pointer |
typedef const Point_2 & | reference |
Points_on_segment_2 (const Point_2 &p, const Point_2 &q, std::size_t n, std::size_t i=0) | |
creates an input iterator g generating points of type P equally spaced on the segment from \( p\) to \( q\). More... | |
Operations | |
double | range () |
returns the range in which the point coordinates lie, i.e. \( \forall x: |x| \leq\) range() and \( \forall y: |y| \leq\)range() | |
const Point_2 & | source () |
returns the source point of the segment. | |
const Point_2 & | target () |
returns the target point of the segment. | |
CGAL::Points_on_segment_2< Point_2 >::Points_on_segment_2 | ( | const Point_2 & | p, |
const Point_2 & | q, | ||
std::size_t | n, | ||
std::size_t | i = 0 |
||
) |
creates an input iterator g
generating points of type P
equally spaced on the segment from \( p\) to \( q\).
\( n-i\) points are placed on the segment defined by \( p\) and \( q\). Values of the index parameter \( i\) larger than 0 indicate starting points for the sequence further from \( p\). Point \( p\) has index value 0 and \( q\) has index value \( n-1\).
The expressions to_double(p.x())
and to_double(p.y())
must result in the respective double
representation of the coordinates of \( p\), and similarly for \( q\).