\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel::LessSignedDistanceToLine_2 Concept Reference

Definition

Operations

A model of this concept must provide:

bool operator() (const Kernel::Line_2 &l, const Kernel::Point_2 &p, const Kernel::Point_2 &q)
 returns true if the signed distance from p and the oriented line l is smaller than the signed distance of q and l.
 
bool operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, const Kernel::Point_2 &r, const Kernel::Point_2 &s)
 returns true if the signed distance from r and the oriented line l defined by p and q is smaller than the signed distance of s and l. More...
 

Member Function Documentation

bool Kernel::LessSignedDistanceToLine_2::operator() ( const Kernel::Point_2 p,
const Kernel::Point_2 q,
const Kernel::Point_2 r,
const Kernel::Point_2 s 
)

returns true if the signed distance from r and the oriented line l defined by p and q is smaller than the signed distance of s and l.

Precondition
p != q.